What is Enapter's AEM technology, and how does it work?

Enapter’s core product is the standardised and stackable anion exchange membrane (AEM) electrolyser. Electrolysers use electricity to split water (H2O) into hydrogen (H2) and oxygen (O2) through an electrochemical reaction. The stack is the electrolyser’s heart and comprises multiple cells

January 11, 2022

Enapter’s core product is the standardised and stackable anion exchange membrane (AEM) electrolyser. Electrolysers use electricity to split water (H2O) into hydrogen (H2) and oxygen (O2) through an electrochemical reaction. The stack is the electrolyser’s heart and comprises multiple cells connected in series in a bipolar design. Enapter’s unique technology is the design and operation of these cells, consisting of a membrane electrode assemble (MEA), made from a polymeric AEM and specially designed low-cost electrodes. The anodic half-cell is filled with dilute KOH (alkaline) electrolyte solution; the cathodic half-cell has no liquid and produces hydrogen from water permeating the membrane from the anodic half-cell. Oxygen is evolved from the anodic side and transported out from the stack through the circulating electrolyte. The hydrogen is produced under pressure (typically 35 barg) and already extremely dry and pure (about 99.9%). Using Enapter’s ancillary dryer module, hydrogen is delivered at 99.999% purity.